Gaya

| Senin, 24 Juli 2017 | |
Gaya, di dalam ilmu fisika, adalah interaksi apapun yang dapat menyebabkan sebuah benda bermassa mengalami perubahan gerak, baik dalam bentuk arah, maupun konstruksi geometris.[1]. Dengan kata lain, sebuah gaya dapat menyebabkan sebuah objek dengan massa tertentu untuk mengubah kecepatannya (termasuk untuk bergerak dari keadaan diam), atau berakselerasi, atau untuk terdeformasi. Gaya memiliki besaran (magnitude) dan arah, sehingga merupakan kuantitas vektorSatuan SI yang digunakan untuk mengukur gaya adalah Newton (dilambangkan dengan N). Gaya sendiri dilambangkan dengan simbol F.
Hukum kedua Newton menyatakan bahwa gaya resultan yang bekerja pada suatu benda sama dengan laju pada saat momentumnya berubah terhadap waktu. Jika massa objek konstan, maka hukum ini menyatakan bahwa percepatan objek berbanding lurus dengan gaya yang bekerja pada objek dan arahnya juga searah dengan gaya tersebut, dinyatakan dengan
Konsep yang berhubungan dengan gaya antara lain: gaya hambat, yang mengurangi kecepatan benda, torsi yang menyebabkan perubahan kecepatan rotasi benda. Pada objek yang diperpanjang, setiap bagian benda menerima gaya, distribusi gaya ke setiap bagian ini disebut reganganTekanan merupakan regangan sederhana. Regangan biasanya menyebabkan deformasi pada benda padat, atau aliran pada benda cair.
Hasil gambar

Jenis-jenis Gaya[sunting | sunting sumber]

Meskipun terdapat dengan jelas banyak tipe gaya di alam semesta, mereka seluruhnya berbasis pada Empat Gaya FundamentalGaya nuklir kuat dan gaya nuklir lemah hanya beraksi pada jarak yang sangat pendek dan bertanggung jawab untuk "mengikat" nukleon tertentu dan menyusun nuklir. Gaya elektromagnetik beraksi antara muatan listrik dan gaya gravitasi beraksi antara massa.
Prinsip perkecualian Pauli bertanggung jawab untuk kecenderungan atom untuk tak "bertumpang tindih" satu sama lain, dan adalah jadinya bertanggung jawab untuk "kekakuan" materi, namun hal ini juga bergantung pada gaya elektromagnetik yang mengikat isi-isi setiap atom.
Seluruh gaya yang lain berbasiskan pada keempat gaya ini. Sebagai contoh, gesekan adalah perwujudan gaya elektromagnetik yang beraksi antara atom-atom dua permukaan, dan prinsip perkecualian Pauli, yang tidak memperkenankan atom-atom untuk menerobos satu sama lain.
Gaya-gaya dalam pegas dimodelkan oleh hukum Hooke adalah juga hasil gaya elektromagnetik dan prinsip perkecualian Pauli yang beraksi bersama-sama untuk mengembalikan objek ke posisi keseimbangan. Gaya sentrifugal adalah gaya percepatan yang muncul secara sederhana dari percepatan rotasi kerangka acuan.
Pandangan mekanika kuantum modern dari tiga gaya fundamental pertama (seluruhnya kecuali gravitasi) adalah bahwa partikel materi (fermion) tidak secara langsung berinteraksi dengan satu sama lain namun agaknya dengan mempertukarkan partikel virtual (boson). Hasil pertukaran ini adalah apa yang kita sebut interaksi elektromagnetik (gaya Coulomb adalah satu contoh interaksi elektromagnetik).
Dalam relativitas umum, gravitasi tidaklah dipandang sebagai gaya. Melainkan, objek yang bergerak secara bebas dalam medan gravitasi secara sederhana mengalami gerak inersia sepanjang garis lurus dalam ruang-waktu melengkung - didefinisikan sebagai lintasan ruang-waktu terpendek antara dua titik ruang-waktu. Garis lurus ini dalam ruang-waktu dipandang sebagai garis lengkung dalam ruang, dan disebut lintasan balistik objek. Sebagai contoh, bola basket yang dilempar dari landasan bergerak dalam bentuk parabola sebagaimana ia dalam medan gravitasi serba sama.
Lintasan ruang-waktunya (ketika dimensi ekstra ct ditambahkan) adalah hampir garis lurus, sedikit melengkung (dengan jari-jari kelengkungan berorde sedikit tahun cahaya). Turunan waktu perubahan momentum dari benda adalah apa yang kita labeli sebagai "gaya gravitasi".
Contoh:
  • Objek berat dalam keadaan jatuh bebas. Perubahan momentumnya sebagaimana
dp/dt = mdv/dt = ma =mg (jika massa m konstan), jadi kita sebut kuantitas mg "gaya gravitasi" yang beraksi pada objek.
Hal ini adalah definisi berat (W = mg) objek.
  • Objek berat di atas meja ditarik ke bawah menuju lantai oleh gaya gravitasi (yakni beratnya). Pada waktu yang sama, meja menahan gaya ke bawah dengan gaya ke atas yang sama (disebut gaya normal), menghasilkan gaya netto nol, dan tak ada percepatan. (Jika objek adalah orang, ia sesungguhnya merasa aksi gaya normal terhadapnya dari bawah.)
  • Objek berat di atas meja dengan lembut didorong dalam arah menyamping oleh jari-jari.
  • Akan tetapi, ia tidak pindah karena gaya dari jari-jari tangan pada objek sekarang dilawan oleh gaya baru gesekan statis, dibangkitkan antara objek dan permukaan meja.
  • Gaya baru terbangkitkan ini secara pasti menyeimbangkan gaya yang dikerahkan pada objek oleh jari, dan lagi tak ada percepatan yang terjadi.
  • Gesekan statis meningkat atau menurun secara otomatis. Jika gaya dari jari-jari dinaikkan (hingga suatu titik), gaya samping yang berlawanan dari gesekan statis meningkat secara pasti menuju titik dari posisi sempurna.
  • Objek berat di atas meja didorong dengan jari cukup keras sehingga gesekan statis tak dapat membangkitkan gaya yang cukup untuk menandingi gaya yang dikerahkan oleh jari, dan objek mulai terdorong melintasi permukaan meja. Jika jari dipindah dengan kecepatan konstan, ini perlu untuk menerapkan gaya yang secara pasti membatalkan gaya gesek kinetik dari permukaan meja dan kemudian objek berpindah dengan kecepatan konstan yang sama. Kecepatan adalah konstan hanya karena gaya dari jari dan gesekan kinetik saling menghilangkan satu sama lain. Tanpa gesekan, objek terus-menerus bergerak dipercepat sebagai respon terhadap gaya konstan.
  • Objek berat mencapai tepi meja dan jatuh. Sekarang objek, yang dikenai gaya konstan dari beratnya, namun dibebaskan dari gaya normal dan gaya gesek dari meja, memperoleh dalam kecepatannya dalam arah sebanding dengan waktu jatuh, dan jadinya (sebelum ia mencapai kecepatan dimana gaya tahanan udara menjadi signifikan dibandingkan dengan gaya gravitasi) laju perolehan momentum dan kecepatannya adalah konstan. Fakta ini pertama kali ditemukan oleh Galileo.
  • Objek berat suspended pada timbangan. Karena objek tidak bergerak (sehingga turunan waktu dari momentumnya adalah nol) maka selama percepatan jatuh bebas g ia harus mengalami percepatan yang diarahkan sama dan berlawanan a = -g dikarenakan aksi pegas.
  • Percepatan ini dikalikan dengan massa objek adalah apa yang kita labeli sebagai "gaya reaksi pegas" yang mana secara nyata sama dan berlawanan dengan berat objek mg.



Sumber : https://id.wikipedia.org/wiki/Gaya_(fisika)
               https://www.google.co.id/imgres?imgurl=http://benergi.com/wp-content/uploads/2016/03/Energi-Potensial.png&imgrefurl=http://benergi.com/energi-potensial-dan-contoh-dalam-kehidupan-sehari-hari&h=275&w=450&tbnid=fZO8x6bKrLzKIM:&tbnh=160&tbnw=262&usg=__fk-qqMMLxF_B8isucUk40jeaQSg=&vet=10ahUKEwirkZTP1qPVAhUDi7wKHYkLC8wQ9QEIKjAA..i&docid=wa33t9g-p81I6M&sa=X&ved=0ahUKEwirkZTP1qPVAhUDi7wKHYkLC8wQ9QEIKjAA


edit

Tidak ada komentar:

Posting Komentar

Posting Lebih Baru Posting Lama
Diberdayakan oleh Blogger.

Popular Posts

Popular Posts

© Design 1/2 a px. · 2015 · Pattern Template by Simzu · © Content ILMU PENGETAHUAN